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Abstract

This paper discusses Beowulf  systems, focusing on Hyglac, the Beowulf system

installed at the Jet Propulsion Laboratory. The purpose of the paper is to assess

how a system of this type will perfor~n while running a variety of scientific and

engineering analysis and design software. The first part of the assessment

contains a measurement of the communication performance of Hyglac,  along

with a discussion of factors which have the potential to limit system performance.

The second part consists of performance measurements of six specific programs

(analysis and design software), as well as discussion about these measurements.

Finally, the measurements and discussion lead to the conclusion that Hyglac is

suitable for running these types of codes (in a research/industrial environment

such as at JPL,) and that the primary factor for determining how a given code

will perform is that code’s ratio of communication to computation.
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1 Introduction

A typical Beowulf  system, such as the machine at the Jet Propulsion Laboratory

(JF’L) may comprise 16 nodes interconnected by 100 Base-T Fast Ethernet. Each

node may include a single Intel Pentium Pro 200 MHz microprocessor, 128

MF3ytes of I)RAM, 2.5 GBytes of IDE disk, and PCI bus backplane, and an

assortment of other devices. At least one node will have a video card, monitor,

keyboard, CD-ROM, floppy drive, and so forth. But the technology is evolving so

fast and price performance and price feature curves are changing so fast that no

two Beowulfs ever look exactly alike. Of course, this is also because the pieces are

almost always acquired from a mix of vendors and distributors. The power of de

facto standards

that provides a

for interoperability of subsystems has generated an open market

wealth of choices for customizing one’s own version of 13eowulf, or

just maximizing cost advantage as prices fluctuate among sources. Such a

system will run the Linuxl operating system freely available over the net or in

low-cost and convenient CD-ROM distributions. In addition, publicly available

parallel processing libraries such as MP12 and PVM3 are used to harness the

power of parallelism for large application programs. A Beowulf  system such as

described here, taking advantage of appropriate discounts, costs about $50K

including all incidental components such as low cost packaging.

The Beowulf%>proach  represents a new business model for acquiring

computational capabilities. It complements rather than competes with the more

conventional vendor-centric systems-supplier approach. 13eowulf is not for

everyone. Any site that would include a Ileowulf  cluster should have a systems
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administrator already involved in supporting the network of workstations and

PCs that inhabit the workers’ desks. Beowulf  is a parallel computer, and as such,

the site must be willing to run parallel programs, either developed in-house or

acquired from others. Beowulf  is a loosely coupled, distributed memory system,

running message-passing parallel programs that do not assume a shared

memory space across processors. Its long latencies require

computation to communication and code written to balance

processing nodes. Within the constrained regime in which

a favorable balance of

the workload across

Beowulf  is

appropriate, it should provide the best performance to cost and often comparable

performance per node to vendor offerings. This paper is intended to help

determine where a wide variety of application codes fit within this regime.

To determine how a given message passing code will perform on a given

machine, the communication characteristics of both the machine and the code

must be known, as well as the computational performance of both the machine

and the code. Computational performance of a code on a Pentiurn Pro system is

under wide study, and will not be focused upon in this paper. Rather,

characterization of the communications of the codes under study and the Beowulf

machine at JPL will be the main theme of this paper, with computational

performance being discussed as needed.

This paper c&’&iders  many application codes. The codes span a wide spectrum of

communication types, in terms of message size, message frequency, and message

count. These codes were chosen to represent a sampling of the types of codes used

at JI’1.. These include codes currently run on parallel supercomputers,
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sequential supercomputers, workstations, and PCs. The intent of this paper is to

examine the performance of a Beowulf  system on these codes, in order to

determine the JPL-wide usefulness of this type of machine in helping engineers

and scientists at JPL do their jobs quickly and well.

2 Beowulf Communication System

The Beowulf  system at JPL comprises 16 nodes interconnected by a 16 port Bay

Networks 281 15/ADV 100 Base-T Fast Ethernet switch. The network switch is built

around a 1.6 Gbps switch fabric, thus allowing up to 8 simultaneous 100 Mbps

streams between 8 pairs of nodes. “

In this section, the communication attributes of the Beowulf  system are

examined. The metric used to measure performance is throughput. The

communication attributes that affect throughput performance include the

following:

● Packet size

● Traffic loading

Another attri~;te that affects overall performance is the ratio c]f communication

to computation in a particular application. This ratio depends heavily on the

application and details of this are left to the descriptions of the specific JP1,

application codes below.



2.1 Eilkcts of Packet Size

An attribute of the network

performance is packet size.

traffic that greatly influences throughput

In the parallel application codes described below, the

a programming interface, Message Passing Interface (MPI), is used to support

communication between nodes, Consequently, throughput performance is

measured using the Linux implementation of MPI (MPICH from Argonne

National Laboratory). In addition, because the MPI implementation of the

communication calls is built on the Linux implementation of BSD sockets,

throughput performance of 13SD sockets is also measured to help evaluate the

overhead associated with MPI.
.

TO see the effects of packet size on an application using MPl, a simple test is run

where one way communication latency is measured between two nodes using

various packet sizes. Many of the communication calls for the ~JPL codes

described below may be characterized by this type of interaction. The sending

node uses a non-blocking send and is responsible for measuring the overall

latency required to send 5000 packets of a specific size. The receiving node uses

blocking receive. The timer on the sending node begins immediately before the

a

MPI_Send  call is initiated and the timer stops immediately after the barrier call,

which signifies that the receiving node has successfully received its packet. The

overhead ass;;iated with the code surrounding the MPI_Send call (loop code,

barrier call) is timed immediately before the actual test and is subtracted from the

subsequent timings.
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The implementation of the communication calls in MPI employ 13S11 sockets via

the CH_P4 abstract device interface (ADI) used in the Linux implementation of

MPI. The socket buffers are set to 64 Kbytes. Figure 1 shows the results of this

experiment. As expected, the overhead of transmitting small packets degrades

throughput. A steady rate of approximately 7 MBytes/s is only achieved when

packet sizes rise above 8 Kbytes. A maximal throughput of 8.3 MBytes is achieved

when the packet size is set to 256 Kbytes. A drop in throughput occurs when

packet sizes are set to 32 Kbytes and 128 Kbytes but its cause is currently

undetermined. This drop in performance may be linked to the socket buffer size

and the ethernet segment size. The issue is still under investigation.

Also shown in Figure 1 is a similar ;xperiment using BSD sockets. This

experiment was run to show the overhead associated with MPI. In this study,

net per f is used to measure the round trip latency of transmitting packets of

varying sizes to determine the effective throughput. A TCP stream of packets is

sent using netper f from a client node to a server node. The server node simply

receives packets and immediately returns a packet to the sender. The client

measures the round trip delay between transmission of the initial packet until the

reception of the response packet from the server node. The performance of 13S13

sockets is clearly superior to that of MPI. A steady maximal rate of 11.8 MBytes is

achieved for a packet size of 512 bytes and higher.
+%

*

There are several reasons for the poorer MPI performance. One cause may be the

overhead of setting up connections for each transmission under MP1. In the pure

BSD socket implementation, a single connection setup call is executed and the set
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of packets are then transmitted. Other factors may include the segmentation

processing that takes place at the socket level for packets larger than 64 Kbytes as

well as at the OS device driver level to adapt to the use of ethernet which has a

maximum transmission unit (MTU) of 1500 bytes.
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Figure 1. Packet Size effects on hroughput  performance
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2.2 Effects of Traffic Imading

‘I’here are various types of traffic loading that might affect performance of

application codes by degrading throughput performance of the supporting

network. In some systems, switching speeds and backbone network throughput

is not sufficient to support multiple streams. Another type of traffic loading that

may affect performance occurs when several streams attempt to send to the same

node. Contention resolution in this case is handled both by the switch and the

operating system that keeps track of the different connections flowing into the

receiving node. Below, these two traffic loading situations are considered.

As mentioned above, the network swftch is built around a 1.6 Gbps switch fabric

and provides switching speeds that is able to keep up with 8 simultaneous

streams with no degradation in performance. This means that designers of

application codes do not need to be concerned about balancing the

communications cost of supporting simultaneous connections.

The type of traffic loading where multiple streams are directed at a single node

does affect throughput performance. Consequently, application codes that require

a node to receive information from more than one other node do experience

degradation in overall performance due to increased communication costs. This

may occur wh%e%m  several nodes must report to a central node (all-to-one

communication) or when a node receives packets from all of its neighbors

(exchanging bounclary conditions). Handling this contention is the responsibility
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of the switch and operating system which must efficiently multiplex the different

streams to this node. In Figure 2, the results of an experiment are shown where
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“igure 2. Traffic loading effects on throughput performance

contention is mapped against throughput for various packet sizes. In this

experiment, ~~tper f is used again to generate BSD socket streams from between

1 and 15 nodes ;O a single receiving node. Performance degrades rapidly and the

results show that throughput drops to a minimum when there are more than 3

connections arriving at a single node. It should be noted that using a larger
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packet size would help improve performance slightly. This is due to the fact that

when packets are large, a smaller fraction of time is spent multiplexing between

streams as compared with delivering the data. In Figure 2, performance of

larger packet sizes is shown to be primarily better when fewer than 7 streams are

contending. Performance is approximately equal for the different packet sizes

when the number of contending streams rises above 7.

3 Application Software

A suite of application software is considered in this assessment. It consists of a

range of applications and related algorithms. There is also a range in the

amount of data being communicated as well as the pattern of communication

across processors. All applications use MPI or PVM for communication between

processors and run on other platforms. ‘l’he application codes are described by

how they use communication and computation. Key parameters are: number of

floating point operations, total number of operations, number of communication

calls, frequency of communications calls, and length of communication calls.

3.1 Physical Optics Antenna and Telescope Design Software
+%

●

The software described in this section4 is used to design and analyze reflector

antennas and telescope systems. It is based simply on a discrete approximation of

the radiation integra15. This calculation replaces the actual reflector surface with
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a triangularly faceted representation so that the reflector resembles a geodesic

dome. The Physical Optics (PO) current is assumed to be constant in magnitude

and phase over each facet so the radiation integral is reduced to a simple

summation. This program has proven to be surprisingly robust and useful for

the analysis of arbitrary reflectors, particularly when the near-field is desired and

the surface derivatives are not known.

Because of its simplicity, the algorithm has proven to be extremely easy to adapt to

the parallel computing architecture of a modest number of large-grain computing

elements such as are used in the Beowulf,  or Intel Paragon parallel machines.

For generality, this code considers a“dual-reflector  calculation, which can be

thought of as three sequential operations: (1) computing the currents on the first

reflector using the standard PO approximation; (2) computing the currents on the

second reflector by utilizing the currents on the first reflector as the field

generator; and (3) computing the required field values by summing the fields

from the currents on the second reflector. The most time-consuming part of the

calculation is the computation of currents on the second reflector due to the

currents on the first, since for N triangles on the first reflector, each of the M

triangles

time, the

reflector,

triangles

on the second reflector require an N-element sum over the first. At this

code has been parallelized  by distributing the M triangles on the second

and%~aving all processors compute identically the currents on all N

of the first reflector. Also, the calculations of field data have been

parallelized. So, steps 2 and 3 listed above are currently performed in parallel,

with step 1 being performed redundantly on each processor. Parallelization  of step
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1 will be performed in the future. There are also sequential operations in all three

steps, such as 1/0 and triangulation of the reflector surfaces, some of which

potentially could be performed in parallel.
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Table 1. Timing results (in seconds) for PO code, for M=40,000, N=400.
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Table 2. Timing results (in minutes) for PO code, for M=40,000, N=4,900.

Tables 1 and 2 show timing results for the PO code, for 2 difference size sub-
+k

reflectors, with the same size main reflector. Each run is broken down into three

parts. Part I is input 1/0 and triangulation of the main reflector surface, some of

which is done in parallel. Part II is triangulation of the sub-reflector surface,

evaluation of the currents on the sub-reflector, and evaluation of the currents on



the main reflector. As stated previously, the triangulation of the sub-reflector and

evaluation of the currents on those triangles is done redundantly, while

evaluation of the currents on the main reflector is done in parallel. Part III is

evaluation of far fields (parallel) and 1/0 (on only one processor).

It may be observed from Tables 1 and 2 that the Beowulf code performs better than

the T3D code, both in terms of absolute performance as well as scaling from 1 to 16

processors, The absolute performance difference can be explained by the faster

CPU on the Beowulf  versus the ‘1’3D, and the very simple communication not

enabling the T3D’s faster network to influence the results. The scaling difference

is more a function of 1/0, which is both more direct and simpler on the Beowulf,

and thus faster. By reducing this pait of the sequential time, scaling

performance is improved. Another way to look at this is to comp~re the results in

the two tables. Clearly, scaling is better in the larger test case, in which 1/0 is a

smaller percentage of overall time.

As all the communication in this code is limited to a few global sums of very small

length, it is clear that while the MP1 packet size is small and the global sums are

not performing at high communication throughput rates. Some overhead might

also be expected since a global sum is an all-to-all communication, as discussed

in section 2.2, but MPI global sums are performed intelligently, so that no node

ever is receiv?$g data from all (or even many) other nodes at one time. The

overhead due to small message size is made unimportant by the extremely small

ratio of communication to computation. Thus, this code performs very well, as

expected, on Beowulf-class  machines.
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3.2 Finite-difference timedomain electromagnetic software

The software described in this sectionG is used for solving antenna patterns,

calculating electromagnetic scattering from targets, or examining fields within

small electronic circuits and boards. This version uses a uniform Cartesian grid,

and describes the object being studied as a combination of cubic cells and square

faces. The code uses an explicit time-marching scheme, and the parallelization

is done by decomposing the 3-dimensional physical domain being studied over the

processors, using a 2-dimensional decomposition, over x and y.

Standard Domain— . . Reauired  Ghost Cells
L)ecompos]tlon -1

afl.,
‘! ,

.,

1El Interior Cells

❑ Ghost Cells

?igure 3. The relation between the 2-D decomposition of the 3-D grid and

he required ghost cell communication.

This code has two types of communication. The first is interior communication,

as shown in Figure 3. At each time step, fields at the boundary of each
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processor’s sub-domain must be passed to neighboring processors for the next

time step. This is the classic usage of ghost cells to hold data needed to update

variables on one processor that themselves are updated on another processor.

Standard Domain Boundary
Decomposition Decomposition

El.’.

❑
❑.:

‘.. ,

❑‘,

El.’
❑,.

III
❑.

Figure 4. The relation between the 2-I) decomposition of the 3-D grid and

the possible redistribution of the boundary variables.

The second type of communication is boundary communication, as shown in

Figure 4. In ~~is code, there is a large amount, of work that needs to be done at the
*

exterior boundaries (enforcing boundary conditions, introducing a forcing

function, and storing data used for post-processing output. ) For the top and

bottom boundaries, the variables to be worked on are distributed on all 16
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processors. However, for the other four faces, the variables to be worked on reside

on only 4 processors, and the other 12 processors will be idle while computations

are being performed. Boundary communication solves this load balance problem,

by redistributing the data on each of these four faces to all 16 processors, doing the

required computations, and the returning the data to the original distribution.

Table 3 shows the relative amounts of communication and computation among

the interior and boundary portions of the FDTD code. These values are for a

problem with a global grid size of 282 x 362 x 102, which requires approximately

half of the memory of each of the Beowulf processors, and is given in units of CPU

seconds/time step. While this problem had a very good ratio of computation to

communication on the Cray T3D, wh&e  it was developed, this ratio suffers on the

Beowulf in that both the computation time is reduced and the communication

time is increased.

During each time step, there are approximately 24,000 messages of 32 bytes, 90,000

messages of 200 bytes, and 12,000 messages of 800 bytes sent. The 32 and 200 byte

messages are used in the boundary communication, while the 800 byte messages

are used in the interior communication. All of these messages are relatively

small, and it is reasonable that the communication time increases fairly

dramatically. There are some potential problem with traffic loading at each node
%%

in an algorithm Of this type, but the code is written in such a way as to

sequentialize the communications in this situation to avoid this problem.
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(shmcm) : (Mpl) \ (MPI, Good j (MPI, Poor
! Load Balance) ! Load B~lanc~)

Interior 1.8 ~ 1.8 ; 1.1 : 1.1
Computation. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .

lnterlor '`""" "''`" "`;`" """"'  """"" ''""' '"3': 's'"" "''"` "'""' "'""' """"" "'''" `""'' '"'''3 :~""" `''""''"""'"""'"““’’””””’”OUO07 ”””””’””f’’’”””O~O8 ;
Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .,..,.,,..,,

““’’”’””””””Bou; idary”’’’’”’””” ‘“””””’””’’O:”l  ”9”””””’’””: 0.19 : 0.14 j 04~
Computation

‘“””””’”””””’go~;  l~J~ry ”’”’”””’”””” "''"'` "'''' o:04"''"'""`""~  "`""" "`'`l": s'''' """"~  `"""' """"` "''`" '"'`so` '''"" ""''" ""``" """-' """"" """`' '"``' `""o:o' '""""'"'"""'`"`'""
Communication

Total 2.0 : 3.5 j 55 / 5.5

Table 3. The amounts of communication and computation in the interior and

boundary portions of the F’DTD code, in CPU seconds per time step, for a 282 x 362 x

102 global grid size problem on 16 processors.

.

The last column of Table 3 was obtained by making the

boundary variables in place, and avoiding the multiple

observation that using the

redistributions of this

data, would not add significantly to the total amount of time spent in computation,

and would have a dramatic effect on the amount of communication time. If the

boundary computation time with perfect load balance is x, then with poor load

balance (no data redistribution,) it should be 4(2x/3)+x/3, or 3x. This clearly is the

better method for this code on the Beowulf  machine, and indeed, would provide a

significant improvement on the T3D (using MPI), as well. The code was not

initially written using this method because the T313 shared memory message-

passing libra~ ,was usecl, since it provides substantially faster communication

than MP1. Using this model, the redistribution of the boundary data made sense.
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For a problem that more completely fills the memory of the Beowulf  processors,

the ratio of computation to communication increases. But even for this problem

size, it is clear that modest rewriting of this code will result in Beowulf

performance that is competitive with the ‘1’3D, at a substantially lower cost. (Note

that while this FDTD code can be run on the T3D in 2.0 CPU seconds/time step,

using a highly optimized kernel and the shared memory library communication

routines, the cost difference still may make the Beowulf  a good choice. )

3.3 Finite-element electzwmagnetic  software

This software is used similarly to th; finite-difference software, except it returns

information at certain frequencies, rather than data over a time period. The

complete finite-element code (PHOEBUS7) builds a large sparse matrix,

distributes it over the processors, and solves for many right hand sides. After the

building and distributing the matrix steps are completed on a workstation or one

processor of a parallel computer, or multiple processors of a parallel computer

using a data parallel language, the solution of the matrix for each of the right

hand sides is done on the parallel computer using a code written within the

message passing model, This section focuses on the matrix solve portion of the

overall problem, since it usually requires over 98% of the complete problem time.
%x

●

After the matrix is been built, reordered to minimize and equalize row bandwidth,

and distributed into files, these files are read into the message passing matrix

solution code. A block-like iterative scheme (quasi-minimal residual) is used for
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the matrix solve, in which a matrix-vector multiply is the dominant component.

Figure 5 illustrates the process performed on a single processor in the matrix-

vector multiply.

\

Columns

1 .ocal processor’s rows

x

.

/’
~1 .ocitl proms sor’s rows

\
Colllrll~lrlic:l(i(Jll from
processor to right

Figure 5. A representation of the work required in each processor to perform a

matrix-vector multiply.

Because the matrix has been distributed in a one-dimensional processor grid, it

makes sense to distribute the vectors similarly. The processor doing this portion

of the multip~must acquire portions of the vector from its neighboring
v

processors, as determined by the column extent of non-zeros in its portion of the

matrix, and then perform the floating point operations of the multiply. The
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resultant vector is local to this processor, and no further communication is

required.

Table 4 show performance data for this code, running on 16 processors, and

solving a matrix problem formed from a model of a dielectric cylinder, with

radius = 1 cm, height = 10 cm, permittivity = 4.0, and frequency = 5.0 GHz. The

matrix is complex, with 43,791 rows having an average of 16 non-zero elements

per row. The physical problem requires solving this matrix for 116 right hand

sides. The items in this table are measurements of the time spent in each part of

the matrix solution for all right hand sides, in CPU seconds.

.

T3D ; T3D : 13eowulf
(shmem) : (MPI) ~ (MPI)

Matrix-Vector
Multiply 1290 : 1290 : 590

Computation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...+...  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Matrix-Vector

Multiply 114 ; 272 ~ 3260
Communication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .,, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Other Work 407 : 415 : 1360
Total 1800 : 1980 : 5220

Table 4. CF’U seconds required for each portion of the matrix

solution for the test problem described in the text.

The computa~~~ in the matrix-vector multiply is 55% faster on the Beowulf  CPU

than on the T3D CPU. This is due to a combination of increased clock speed and

increased cache size. The communication is about 10 times slower on the Beowulf

compared with the T3D (both using MP1), which is to be expected for the size of the
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messages. This problem requires approximately 140,000 messages of 440,000

bytes, 78,000 messages of44,000 bytes, and 70,000 messages with length between

44,000 and 440,000, aswellas 40,000 global sums oflessthe160 bytes. With

messages ofthis size, this code is obtainingas much throughput as is possible

with MPI, and any potential problems with contending streams has been

eliminated by the method in which the algorithm is implemented. All of the

global sums are included in the data of the “Other Work” row, which also contains

a large number of vector-vector operations (including dot products, norms, scales,

copies. ) The increase in time of this work from the T3D to the 13eowulf can be

viewed as a function of decreased memory-bandwidth, as there is almost no cache

reuse in this work.
.

Overall, this problem is almost 3 times slower on the Beowulf  than the T3D, due to

a combination of communication speed, memory-bandwidth, and amount of

communication. This is still decent price performance, but it is not outstanding,

compared with the current value of a T3D.

3.4 Incompressible fluid flow solver

This software package implements a state-of-the-art numerical Navier-Stokes
+%

algorithm, a second-order projection method, for incompressible flow simulations

on distributed-memory, message-passing machines. Features of this algorithm

include its superior numerical stability in simulating high Reynolds number,

non-smoothing flows and its robustness in resolving non-smooth, strongly
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sheared flows, due to the use of a Godunov scheme combined with an upwind

scheme in the discretization  of the convection term. The parallel flow solver

package has been developed for solving two and three dimensional problems with

a variety of boundary conditions on rectangular, staggered finite-clifference  grids.

The model of our parallel implementation is domain partition and explicit

message-passing. The parallel flow solver uses a parallel multigrid elliptic solver

(also a stand-alone solver developed in-house at JPL) as a computation kernel to

efficiently update velocity and pressure fields. A generic message-passing

interface is used in the solver package with software wrappers implemented for

several message-passing libraries, including MPI, PVM and Intel NX.

In the parallel implementation, grid; at different levels (due to the use of

multigrid schemes) are partitioned automatically in a preprocessing step based

on the given physical (finest) grid. Ilue to the appearance of idle processors

during processing on some coarse grids, a hierarchy of logical processor

networks corresponding to the grid levels is created in the preprocessing step for

message-passing at each grid level. The communication structure for the solver

is constructed in a preprocessing routine and remains fixed during the solver

execution. Flow simulations using the solver have been performed on the T3D to

verify the numerical and flow physics results. Parallel performances in terms of

speed-up and parallel scaling have been measured and studied on T3D and Intel

Paragon syst&s8.

A performance-comparison study using the solver on the Beowulf  ancl T3D

systems has also been performed, using the MPI version of the code. In the study,
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grids ofdifferent sizes are usedon 1,4, and 16processors  tocompare the total

execution time and parallel scaling. For this study, the flow solver is set up to run

one time step in a 2-D driven-cavity flow in a unit square. A breakdown of

computational cost and communication (message-passing) cost is also shown for

each case. Table 5 shows the execution times on 16 processors on the Beowulf  and

the T31) for three grid sizes.

Grid Size ~ Number of ~ Beowulf  Run ~ T3D Run
: Processors I Time (seconds) 1 Time (seconds)

64x64 ! 16 i~3.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .......!........................  ........................,
256 X 256 : 16 : 22.7 : 9.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,:...........  ............. ............. .............

1024x 1024 j 16 j 67.5 : 67.2
.

Table 5. Beowulf  and T3D Results (Timing vs. Grid Size)

On the 64 x 64 grid, the T3D is about four times faster than the Beowulf. As the

problem (grid) size increases, the Beowulf  catches up with the T3D, and the

execution times are almost the same for the 1024 x 1024 grid. The T3D wins on the

small grid because its interprocessor communication bandwidth is higher than

that of the Beowulf, and on the small grid, communication time dominates the

total execution time. On the other hand the Beowulf  wins on the large grid where

local computa~qps  take a higher percentage of total execution time because the

Pentium Pro processor of the Beowulf  is faster in floating-point calculations than

the Alpha processor on the T3D. Table 6 shows parallel scaling cjf the solver on
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the two systems, where each processor has a fixed grid size of 128 x 128 and the

solver is run on varying numbers of processors.

Grid Size ~ Number of ! Beowulf  Run ~ T3D Run
j Processors \ Time (seconds): \ Time (seconds):

Total - ~ Total -
~ computation - ~ computation -
I communication : communication

128x128 ~ l! 6.4- 6.4-0.0 \ 13.8 -13.8-0.0
'""'256x"256'''""""`""""""""'"'d`<""'4""'"""""""'""'`""";"""''22:2":"7:o`":"l5:2''"'';'''`"l9:l'":'"l4:7"":"4:4`'''4'
"`""5 12x"512"""""`;" """""  """"" """"" "lo`""""""''""" "'""; """"" 36:6" :"7;3"":"29:3"" """;' '''"22; 7":"'15:4"":"7:3 """""'

Table 6. Beowulf  and T3D Results (Timing vs. Number of Processors)

Perfect scaling

execution time

.

would be indicated by constant execution time. The increase in

here is mainly due to the multigrid  scheme used in the solver.

When a larger global gricl is used, there are more levels of grid to work on

V-cycle and full V-cycles schemes, which increases both the computation

in the

and

communication costs. Since the full V-cycle scheme (which is numerically more

efficient than the V-cycle scheme) is used in the solver for these scaling tests, a

larger global grid also implies more time is spent on coarse grids. This explains

the increase in communication cost being more significant than that of

computation cost. As can be seen, the T3D scales better than the Beowulf,  which
%%

is again the res~lt of faster communication bandwidth and slower processor

speed on the T3D compared to the Beowulf. Running the code with a 1024 x 1024

grid on 16 processors procluces  340,000 messages of size 24 to 48 bytes, 210,000

messages of 80 to 240 bytes, and 65,000 messages of 500 to 2000 bytes. There is



some potential for traffic blocking at a single node, but since the communication

is nearest-neighbor, at most four streams could be contending, and the

application tried to prevent this from happening.

3.5 Non-linear thermal convection solver

This software is a parallel implementation of the finite volume method for three-

dimensional, time-dependent, thermal convective flows. The discretization

equations derived from the scheme, including a pressure equaticjn which

consumes most of computation time, are solved using a parallel multigrid
.

method. In order to achieve load balance and to exploit parallelism as much as

possible, a general and portable parallel structure based on domain

decomposition techniques was designed for the three dimensional flow domain. It

has l-D, 2-D and 3-D partition features which can be chosen according to different

geometry requirements. MPI is used for communications. It currently runs on

the Intel Paragon, the Cray T3D and ‘1’3E, the IBM SP2 and the Beowulf systems,

and can be easily ported to other distributed memory systems.

The implementation of the software is based on the widely used finite volume

method with an efficient and fast elliptic multigrid  scheme for predicting

incompressib~ex  fluid flows, which proved to be a remarkably successful implicit

method. A normal staggered grid configuration is used and the conservation

equations are integrated over a macro control volume. Local, flow-oriented,

upwind interpolation functions have been used in the scheme to prevent the
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possibility of unrealistic oscillatory solutions at high Rayleigh  numbers. A

rnultigrid scheme is applied to the discretized equations, which acts as a

convergence accelerator and reduces the CPU time significantly for the whole

computation. The detailed parallel implementation and numerical results with

Rayleigh numbers up to 107 have previously been published.

Most of this code’s communication occurs in each subdornain exchanging

information with its neighbors (using message-passing) during each iterative

level. Since only the values at the boundaries of each subdomain need to be

updated at each iteration, the total amount of communication is relatively small

as compared with the amount of computation (particularly when a large grid size

is used. ) The remainder of the communication occurs in the global sums which

are usecl for the convergence and steady-state checks. These use much less time

than the boundary communication. In this section, code performance is

compared on the Cray T3D, the Intel Paragon, and the Beowulf. The focus is on

the amount of computation and communication on these systems. Other

performance data from the code, such as speed-up over different number of

processors and comparison with other systems is available.

Paragon : Beowulf ; T3D
Computation 110 ~ 35 ~ 27. ,,, ,, ...,.  . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Conlmunlcatlon 49 : 60 ~ 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Other Work 22 : 5 i 12

Total 181 : 100 i 58
%h

v

Table 7. Run time in seconds for various portions of the solver for

the test case described in the text.



Table 71iststhe detailed performance data of theanlountof computation and

communication on the three systems. Here a moderate grid size 64 x 64 x 64 with

Rayleigh number equal to 10G in air was used for testing at fixed time steps by

using 16 processors. The Cray T3D gives the best overall performance, and the

Beowulf  shows better performance than the Paragon. It is interesting to note the

change of the ratio of computation to communication among these systems. It is

obvious that the ratio changes rapidly from one system to another. On the

Paragon, the code is dominated by the computation. On the Cray T3D most of the

time is still used in computation, but the communication and other work (which

includes the I/O and initial set-up) also use a fair portion of the total time. On the

Beowulf, the code suffers by the slow network communication, and the

communication becomes dominant. The computation speed is competitive with

the Cray T3D for this problem, and, as the grid size of the problem is increased,

the performance on the 13eowulf will be improved. In conclusion, the Beowulf  is a

good system for computationally-intensive  codes at a reasonable price.

3.6 Parallel Extensions for Matlab

Matlab1° has become a popular tool among JPL scien ists and engineers for

matrix computation. It is a very capable tool, and offers a great deal of

functionality ~~d flexibility. However, certain problems are so large that they tax

the computational resources of even the fastest workstations.
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For these problems, the decision was made that parallel computation could

provide a way to speed up the computation time. This section describes the

software designed for this purpose, called Matpar. Matpar consists of Matlab

extensions known as M13X-files, as well as code that runs on a parallel computer.

DMatlab

Matpar
extensions

UNIX Workstation

y
. .

.

Figure 6. Matpar Architecture

Support Software:
ScaLAPACK
PBLAS
BI.AS
BLACS

Parallel Computer

The Matpar software follows a client/server approach. The client software resides

on a workstation, and the server software is on a parallel computer (see Figure 6).

The client so$~are consists of a Matlab MEX-file  for each of the parallel routines,

as well as share’d object code. The MEX-files  check the parameters appropriate

for the call, and then call a corresponding routine in the shared code. The shared

object code does some additional checking of the parameters, and then uses PVM

to initiate a session on the parallel computer. Once the session has begun, the
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client transmits a Matpar request to the parallel computer, again using PVM

communication routines. Each request contains the command to be executed, as

well as all the necessary data for that command.

All communications between server and client go through a single node on the

parallel computer, called the coordinator node. This decision was made because

of the way PVM is implemented on one of the computers to which Matpar has

been ported. In the Cray T3D version of PVM, a PVM connection is made only to

the first node in the partition being used. In order to make Matpar as portable as

possible, we decided to incorporate this characteristic into the software. This

means that the data usually takes two hops, first from the client to the

coordinator, and then from the coordinator to the final destination node.

The Matpar software is not a complete parallel version of Matlab. Instead it is

targeted for very specific operations which require large amounts of

computational power for large matrices. It is then left to the user to decide

whether to call one of the parallel routines in place of an equivalent Matlab

function. Because of the cwerhead  involved in sending data from the workstation

to the parallel computer, a user would not ordinarily call these routines for small

matrices.

The speed ob~$ued  by using Matpar depends in large part on the ratio of

computation to communication between client and server. The latter is done

serially, and can take up more time than the computation for many problems.

But where the ratio is high, very good results can be obtained. One Matpar
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benchmark problem runs thirty times faster using Matpar with 32 nodes of a T3D,

than the same problem run using Matlab alone on a Sun UltraSparc.

In attempting to port the Matpar code to the 13eowulf system, some problems have

been encountered that have delayed the completion of the project. The first

problem is that the individual nodes of the Beowulf  do not have 1P addresses that

are visible outside of the cluster. In particular, they can not be addressed by the

client, and so the PVM daemon running on the client can not add those nodes to

its virtual machine. Vendors of massively parallel processors (M PPs) handle this

situation by writing an MPP version of PVM that allows the MPP to be viewed as a

single machine by PVM, but there is no such version of PVM written for the
.

Beowulf  computer.

A second problem with the Matpar port to Beowulf  has to do with performance.

The ScaLAPACKll  routines take longer to execute on the Beowulf  than on the

Paragon. For example, a matrix-matrix multiply for a 1024 x 1024 double

precision matrix distributed evenly across 4 nodes takes 32 seconcls  to execute on

the Beowulf, compared with 13 seconds on the Paragon. Part of this performance

problem can be explained by the difference in 13 LAS12’ 13’ *4 libraries, which are

highly optimized on the Paragon. The Paragon dgenun routine does a matrix

multiply 28 times faster than a non-optimized C routine. The JPL Beowulf  uses

the public do%~z?in BLAS implementation, which runs only twice as fast as the

non-optimized C routine. Pathcalc is a program used at JPL to estimate Beowulf

run times based on varying values of CPU speed, network latency, anti

bandwidth. Pathcalc estimates that if the Reowulf  BLAS libraries were faster
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than non-optimized C code by the same factor of 28, one would see a run time of 6

seconds for the multiply operation.

The other part of the performance problem on the Beowulf  relates to poor message

passing performance. Matpar is dependent on PVM because of the spawning of

jobs from the client to the server. Consequently, the PVM version of the 13LACS

message passing library (used by ScaLAPACK) is used, rather than the MPI

version. Unfortunately, Matpar is seeing an effective bandwidth of only about 2

hIIYs. Whether that is because PVM is slower than MPI, or it is due to the

additional overhead of BLACS is not clear. If messages could be sent at MPI

benchmark speeds, Pathcalc estimates the run time would drop to 29 seconds.

lJsing both MPI speeds and better B~AS libraries would give a speed of 3 seconds,

4 1/2 times faster than the Paragon, and twice as fast as the T3D.

If the prc)blem with the message passing speed can be resolved, the Beowulf

platform has the potential to become one of the best platforms for Matpar because

of its high computation speeds and large memory size (128 MB).

4 Conclusions

The intent of%t;is paper was to discuss the Beowu]f  class of computers, focusing

on communication performance, since the computation performance of the

personal computer CPU which forms the building block of the Beowulf  is well

understood, and by describing a number of application codes and their
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performance on that class machine, to reach some conclusions about what this

performance implies regarding the feasibility of using this type machine to run

science and engineering codes in an institutional environment, such as JPL.

Potentially poor communication performance due to small message size, MPI

overhead, and contention at a node have been explained, and six applications

were introduced. It is observed that all the codes have been written in such a way

as to remove the possibility of traffic contention, and that while communications

performance is clearly a function of message size and thus important, the

percentage of communication in each application has proven to be more

important in estimating the overall performance of the applications.
.

The physical optics software had the best performance, primarily due to its almost

embarrassingly parallel nature. The limited communications required by the

software led to very good overall performance, due mostly to the CPU speed of the

Beowulf  being 33% faster than that of the T31). This code is superior in both

absolute performance and price-performance on the Beowulf  than on the T3D.

The electromagnetic finite-difference time-domain software showed behavior that

was found to be typical for most of the codes; that is, a reduction in

communication performance and an improvement in computational
%x

performance. I%r this code, these did not balance out, but with some re-writing, a

final code that performed within 60% of T3D performance was obtained. Given a

cost difference of at least 100070 between the two machines, this is an extremely

good price-performance comparison.
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The electromagnetic finite-element software performed similarly to the finite-

difference software, in that computation was faster, and communication was

slower. The unique aspect of this code is the large amount of BLAS l-type

operations that are performed with data moved from main memory, rather than

from cache. This work is substantially slower than similar work on the T3D. The

reason for this is a combination of poorer memory-CPU throughput, and lack of

optimized BLAS routines for the JPL Beowulf. Overall, this code has acceptable

performance on the Beowulf.

The communication pattern in the flow solver is typical of a finite-difference PDE
.

solver, much like the electromagnetic code, where the dominant communication

is of the nearest-neighbor type. In the multigrid  kernel, however, the

communication is complicated by the appearance of idle processors on some very

coarse grids. This irregularity of communication patterns is handled by setting

up separate (logical) communication channels for grids/processors at different

levels. The communication structure for the solver is constructed in a

preprocessing routine and remains fixed during the solver execution. Overall,

this code achieved reasonable performance on the Beowulf  system, and in terms

of price-performance, was clearly superior to the T3D.

The 3-D ther~~i  convection code was successfully ported to the Beowulf  system

without any difficulty. The code is basically identical to the one running on the

Paragon and the T3D. The performance on Beowulf  is good if the code is

numerically intensive and communication part is small. In spite of the slow
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communication rate associated with MP1 and the network used, the code’s

results as illustrated here demonstrate the great potential for applying this code to

solving much higher Rayleigh number flow in realistic, three-dimensional

geometries using the Beowulf system with a larger number of processors.

In its current configuration, Matpar has a good balance between computation and

communication for its benchmark programs. However, both computation and

communication times need to be improved for the overall execution speed to

surpass the speed on the Paragon. This improvement can be made by using

highly optimized BLAS libraries, and by either improving PVM performance on

the Beowulf or using an MPI version of BLACS.
.

For MIMI) applications, such as Matpar, there is not a clear method for code

assessment. It is possible that the ratio of communication to computation on the

code’s critical path (the path of operations which controls the complete execution

time) may be the primary factor, but more codes of this type would have to be

examined to make a final determination.

However, for most of the codes discussed in this paper, which more or less follow

the SPMD model, the most important parameter in assessing each code’s

suitability to the Beowulf platform is the ratio of communication to computation.

When this ra~;’is very small, the Beowulf  has very good performance. As the

ratio increases, the Beowulf still performs well when examined in terms of price-

performance, but not in terms of absolute performance. For a comnlunication-

bound code, the Beowulf would be a poor choice.
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Other communication characteristics such as packet size and traffic loading

affect performance only minimally. Large packet sizes provide higher maximal

throughput but may only benefit those codes that can be rewritten to use a few

large messages rather then many small messages. Lastly, traffic loading may be

an issue when the number of contending streams rises above a certain

threshhold, but most codes and message-passing libraries are written specifically

to avoid this problem.

.
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6. Tables

Number of Beowulf T3D
Processors """"' ''`d` "'" I"""" '"''` ':''' '"""' '""""II""""" '"''': """``  `""""""Ire"'""`'`' """"" ""'""  '''` I"""" """`' '':"" """`" ''""" "II`' '""""  "":'` """"" """"'Ire`"`'"``'

1 5.10 i 307 i 98.2 17.5 : 442 ~ 112. . . . . . . . . . . . . . . . . . . . . . . . . . . ..3.74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . ..1.2 .1 . . . . . ..i . . . . . . . . ..221 . . . . . . . . . . . . . . . . . ..56.2 . . . . . .
2 154 : 51.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...&.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 3.12 ~ 77.4 ;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,,, , <.,,,......4,:,  . . . . . . . . . . . . . . . . . . . ,, !,,..
25.7 9.83 i 112 j 28.6

““’”””””””’”””’””8 ””’””””’””””””” """"" '""""2:76 """"" :'""" """"' 39:2" """": """"" ""'""12:"6  """"'' """"" "`""8:83 """"" ":"""  '`""" "56:9 `""'" ":'"" """"` ""l`4:9"""""". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16 2.73 : 2(-.1 : 6.47 9.15 : 2.9.7 i 8.05

Table 1. Timing results (in seconds) for PO code, for M=40,000, N=400.+
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Number ot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .." . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..!.?Y  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .~eowulf
Processors I:I1i 111 1! 11! 111

1 0.0850j 64.3 ; 1.64 0.285: 87.7 : 1.87
‘“””’”’””’”””””’”’”2  ”’””’”””’”””’ """""  '"""o:0624:"'"" "''`"" `32:2 ""':` "'"`"" ``"o:838"" `"""" ``"'"o:202"":`"  '"""` "`''44 do"``":""""""`"  "`o:937'. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
,, . . . . . . . . . . . . . . . . ..! . . . . . . . . . . . . . . . . . . . . . ..9.95 .!. . . . . . . . . . . . . . ..!.9..?  . . . . . . . . . . . . ..9.?...! . . . . . . . . . . . . ..Q..!.5...i  . . . . . . . . . ..?.? ..!  . . . . . . . . . . . . . .. Q..fE5.

8 0.0459! 8.17 i 0.211 0.148 ! 11.2 j 0.2.43
““””””””””””’’”””””””’”””””’””””””’” """"' """""  """"" """""  oo"""""$""""""" ""'`4; "id"''!""""''''  'o:`l""i`  o"" """"" """"'oUl"46`"~" ""''' '"""" 3:77" """j"  "'`"" ''"'o; "j'~5'16 0.0437:

Table 2. Timing results (in minutes) for PO code, for M=40,000, N=4,900.

.
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(shmem) ~ (MPI) ~ (MP1, Good ~ (MF’1, POO1
~ Load Balance) [ Load Balance)

Interior 1.8 ~ 1.8 i 1.1 : 1.1 —
Computation I """"" """"" "''"" """"" """'" `"''" """"' '"""" """"" `"""" "'''" ""''' ""'"" "''`' "'''" """"" ''''" '`"'' '''3: s""`"`''""'''"'''"““”””””””””’’’Inteti6r”””””’”””””””””  ““””””””’0:007””””’”””; 0.08 ; 3.8

Communication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................ .............
Boundary 0.19 ; 0.19 : 0.14 : 0.42

Computation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..dd..  c . . . ..i.  d . . . . ..c  . . . . . . . . . . . . . . . ..<  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..+ . . . . . . . . . . . . . . . . . . . . . . . . . . ..................
Boundary 0.04 : 1.5 : 50 ; 0.0

Communication
Total 2.0 i 3.5 i 55 : 5.5 —

Table 3. The amounts of communication and computation in the interior and
.

boundary portions of the FDTD code, in CPU seconds per time step, for a 282 x 362 x

102 global grid size problem on 16 processors.
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Matrix-Vector
Multiply

Computation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Matrix-Vector

Multiply
Communication

““””””””””””’”””””””other”work”””””””””””’””””””
TOtal

T3D
(shmem)

1290

114
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

407
1800

T3D ; r3eowLllf

(MP1) ; (MPI) —

1290
. . . . . . . . . . . . . . . . . . . . . . . . .

590

3260

'"""" """""4'ls''"`""  ""`": ''"'" """"` ""'"' "'"'" "l`360"  '"''"""4""""'""""""
1980 ; 5220 —

Table 4. CPU seconds required for each portion of the matrix

solution for the test problem described in the text.
.
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Grid Size ~ Number of ~ Beowulf  Run ~ T3D Run
~ Processors ~ Time (seconds) ~ Time (seconds)

64x64 i 16 ~ 12.1 ~ 3.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ..;........,,,..  ...................,,.,,,,,,,... .....
256x256 ! 16 i 22.7 ! 9.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,,, ,, s.,,,,,,., .,, .,,..,,,..,,, ,,, ,,,  ,, .,,.,..:  . . . . . . . . . . . . . . . . ,, ..,,.,,...,,,<  .,, ,, .,, ,., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1024x1024 ; 16 ; 67.5 67.2

Table 5. Beowulf  and T3D Results (Timing vs. Grid Size)

42



Grid Size ~ Number of ! Beowulf  Run ~ T3D Run
~ Processors / Time (seconds): ~ Time (seconds):

Total - ~ Total -
~ computation - ~ computation -
! communication j communication

128x 128 ; 1: 6.4- 6.4-0.0 ! 13.8 -13.8-0.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ....:,.,,...................... ................ .........
256 X 256 : 4 s 22.2 -7.0-15.2 ; 19.1 -14.7-4.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ....+....,,...,  ................................ .........
512 X 512 : 16 i 36.6 -7.3-29.3 : 22.7 -15.4-7.3

Table 6. Beowulf  and T3D Results (Timing vs. Number of Processors)
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Paragon ~ Beowult ~ T3D
Computation 110 : 35 ; 27

Conmwnlcatlon““””””””’”’”’”””””””””””””””””< ““’’””’”””’’’’”: ”””’”””””””””””””””””” """"" ""'"" "'``" ""49" ""''" """"" """"" "/"""  """"' """"do'"'`"""""  """:" """"' """'' '""'" """"" '"""19"  """""""'`""""""'""""'"'
""'"` ""`"" `"""" """""  "''"" ""''`"'""""""""'"""""""""'"'"""""`""'`"""""'"'Other Work ``""" """"" """"" ""22" "'`'" """"" ""'"" "~""" """"` `"""` `s""" '''"" """'"  ':""` """"" "'""` `'""" "'"""  ""12" "`"""'"``""""""""""""''

Total 181 ! 100 : 58 —

Table 7. Run time in seconds for various portions of the solver for

the test case described in the text.

.
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Figure 1. Packet Size effects on throughput performance
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Figure 2. Traffic loading effects on throughput performance
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Standard Domain
Decomposition Required Ghost Cells

Figure 3. The relation between the 2-D decomposition of the 3-D grid and the
.

required ghost cell communication.
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Figure4. Therelation between the2-Ddecomposition of the3-Dgrid and the

possible redistribution of the boundary variables.
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Figure 5. A representation of the work required in each processor to perform a

matrix-vector multiply.
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Figure 6. Matpar Architecture
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